Newton's Law of Universal Gravitation

(Why are we attracted to that big bright object in the sky)

Newton's Big Idea

- Newton developed the idea that two bodies exert a force on each other over a distance.
- Specifically, sun and earth
- He concluded that the force of gravity decreases with the square of the distance, r.

$$
F \propto \frac{1}{r^{2}}
$$

- Newton realized that the force of gravity depended not only on distance, but also on the mass of the objects.

$$
F \propto \frac{m_{\text {earth }} m_{\text {other body }}}{r^{2}}
$$

- He proposed that if this is true between the Earth and some object, why not between any two objects.

Newton's Law of Universal Gravitation

- Every particle in the universe attracts every other particle with a force that is proportional to their masses and inversely proportional to the square of the distance between them. This force acts along the line joining the two particles.

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

G is the universal gravitational constant, $6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$

Example 1

- What is the force acting on a 2000 kg spacecraft when it orbits the Earth at a distance of twice the Earth's radius?
- Radius of Earth $=6380$ km
- Mass of Earth $=5.98 \times 10^{24} \mathrm{~kg}$

$$
\mathrm{F}=4900 \mathrm{~N}
$$

Example 2

- A 50 kg person and a 75 kg person are sitting on a bench so that their centers are 50 cm apart. What is the magnitude of the gravitational force each exerts on each other?

$$
F=1 \times 10^{-6} \mathrm{~N}
$$

Gravitational Field Strength

- We can use Newton's Law of Universal gravitation to calculate the gravitational field strength (also called gravitational acceleration), g.
- Consider an object with mass, M, sitting on Earth.

$$
F=G \frac{m_{1} m_{2}}{r^{2}} \quad F=m a
$$

$$
\begin{gathered}
F=G \frac{M m_{\text {earrh }}}{r^{2}} \quad F=M g \\
G \frac{M m_{\text {earrh }}}{r^{2}}=M g \\
g=G \frac{m_{\text {earrh }}}{r^{2}}
\end{gathered}
$$

We can calculate the gravitational field strength for any object using this method.

Example

- Mt. Everest is 8848 m above sea level. Determine the value of g at the top of the mountain.
- Radius of Earth $=6380 \mathrm{~km}$
- Mass of Earth $=5.98 \times 10^{24} \mathrm{~kg}$

$$
\mathrm{g}=9.77 \mathrm{Nkg}^{-1}\left(\text { or ms }^{-2}\right)
$$

